
POWER ROUND RUBRIC

1. (a) Unique solution:

(b) Let P (G) denote the number of perfect matchings on graph G. Label the vertices 1, ..., 2n; then we
note that vertex 1 can be matched with any of the remaining 2n− 1 vertices. Deleting other edges
connected to these vertices gives us a K2n−2; thus, P (K2n) = (2n− 1)P (K2n−2).
We claim that P (K2n) = (2n − 1)(2n − 3)...1. To prove this, we use induction. First, our base
case is P (K2) = 1. Suppose it’s true for P (K2n−2). Then for K2n, P (K2n) = (2n − 1)P (K2n−2) =
(2n− 1)(2n− 3)...1 by the inductive hypothesis.
When n = 6, we have 11 · 9 · 7 · 5 · 3 · 1 = 10395.

(c) We split into cases: odd n and even n
• Case 1: n is odd.

Consider the center polygon. If an edge is matched in that case, the corresponding outside
polygon will not have a valid matching since the number of sides is odd. Thus, we can remove
all center edges. We are then left with a cycle with an even number of vertices, so there are
exactly 2 perfect matchings in this case.

• Case 2: n is even.
This time, the center polygon can have edges matched. Look at the center polygon only. We
can label the edges alternating on or off. If an edge is on, then there are two perfect matchings
corresponding to the outside polygon. If an edge is off, then there is only one perfect matching.
There are n

2 on edges in the center polygon, and there are two ways to orient each of them,
and there are two ways to assign the on and off edges in the center polygon, thus the answer
is 2 · 2n

2 = 2
n
2 +1

(d) Color the vertices as follows:

We notice that each edge contains at least 1 white vertex. However, there are only 4 white vertices
and 6 black vertices, so there cannot be a perfect matching, as every one of the 5 edges in the
matching must touch a white vertex.

2. (a) Let Gn denote this graph.
We use induction to show that the number of perfect matchings is Fn+2, where Fi denotes the ith
Fibonacci number.
Consider the upper left vertex. We have two cases:
First, the matching contains the vertical edge touching this vertex. Then we remove all edges
associated with the left two vertices, leaving us with a copy of Gn−1 which can be matched as such.
Second, the matching contains the horizontal edge touching this vertex. Then after removing this
edge, the bottom left vertex has only the horizontal edge sticking out of it and thus that edge is
required to be in the matching. After removing it as well, we are left with a copy of Gn−2.
Since these are the two cases, we have Gn = Gn−1 +Gn−2. Now, we notice that G0 = 1 and G1 = 2;
thus, the unique Gn stemming from such a recurrence must be Gn = Fn+2.

(b) We claim that there are 2FnFn+1 matchings. To show this, first, we check to see that this is true
for the base cases of n = 1 and n = 2. We consider where the vertex highlighted in the below graph
goes to. Note that the graph is symmetric.
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In the first case, we have the vertex matched by the vertical edge leading up, as seen below. Note that
this means the gray edge highlihgted below is forced, as otherwise the gray vertex will be forced to
match with the dashed line in the below graph. This would disconnect the graph into two connected
components, each with an odd number of vertices, leaving them unable to be matched.

This leads us to the following diagram of forced and forbidden edges (bold edges are forced, crossed-
out edges are forbidden):

which would give us Fn−1Fn matchings by (a), since the number of matching of a graph consisting
of two disjoint pieces is the product of the number of matchings on each piece.
In the second case, we have the horizontal edge leading left, as seen below. This forces the horizontal
edge shown in gray, and leads to the following diagram of forced and forbidden matches:
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which would give us F 2
n matchings by (a).

By symmetry, we get the same for the other horizontal edge and the other vertical edge leading from
our chosen vertex. This gives us a total of

2Fn−1Fn + 2F 2
n = 2Fn(Fn−1 + Fn) = 2FnFn+1

matchings.

3. Every forest has at least 1 leaf - a vertex with degree 1. (This can be shown using pigeonhole - no cycles
means the graph, with n vertices, has ≤ n−1 edges.) Then we use induction. A forest of size 2 has either
one perfect matching or none. Suppose every forest of n − 1 size has at most 1 perfect matching. Then
we have our forest of size n, pick a leaf and the unique vertex adjacent to it. If there is a matching, this
edge will be forced so we can remove it from consideration. By induction, the rest of the graph has at
most 1 perfect matching, and thus the forest has at most 1 perfect matching.

4. We claim that G has a Hamiltonian cycle, that is, a cycle that includes all points in G exactly once.
Suppose that we have a graph G satisfying these conditions that does not have a Hamiltonian cycle.
Then we can find one in the set of all such G with the maximum number of edges. This graph, call it H,
must contain a path {v1, ..., v2n} that contains all points in H, otherwise we may add more edges without
creating a Hamiltonian cycle.
v1 is not adjacent to v2n because H does not have a Hamiltonian cycle. We notice that deg(v1)+deg(v2n) ≥
2n. Thus by pigeonhole, we have some i so that vi is adjacent to v1 and vi−1 is adjacent to v2n. Then

{v1, ..., vi−1, vn, ..., vi, v1}

is a Hamiltonian cycle, reaching a contradiction.
Now that G has a Hamiltonian cycle, we simply take every other edge of the cycle to obtain our desired
perfect matching.

5. For the easier part, we prove that if a graph has a perfect matching, then |adj(S)| ≥ |S|. Let M be a
perfect matching. For every set S ⊆ V1, for each vertex v ∈ S, consider the vertex v′ that v is matched
to M . Since all v′ are distinct, and the set of all v′ is a subset of the set of all neighbors to v, the result
follows. �
For the other direction, we must prove that ∀S ⊆ V1, |adj(S)| ≥ |S| implies that G has a perfect matching.
First, we define a few terms:
• Define an edge to be ”on” if it is part of the current matching, and off otherwise.
• Define an ”augmenting path” to be a path through the graph that starts with an off edge and

alternates between on and off edges.
We proceed by contradiction. Suppose that G does not have a perfect matching, but instead, has a
maximum matching M . Consider an unmatched vertex v, and consider all augmenting paths coming out
of it.
Lemma 1: All augmenting paths from v end on a vertex in V1

Proof of 1: Suppose that the augmenting path ended on a vertex in V2. Then, we could take that path
and toggle the state of each edge, from on to off and vice versa. This is still a valid matching, since all
vertices have at most one on edge incident from it. However, since the path starts and ends on an off edge,
this will lead to matching with size |M | + 1, which contradicts the fact that M is a maximal matching,
so we are done. �
Let A the set of all vertices in V1 that is connected to v by some augmenting path, and let B be the set
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of all vertices in V2 that is connected to v by some augmenting path. Consider the set C which is all the
vertices in V2 that is matched to some vertex in A in M .
Lemma 2: Except for v, all vertices in A are matched in M .
Proof of 2: Since we start with an off edge, we enter a vertex in V2 using an off edge, and we enter a
vertex in V1 using an on edge. Since we must enter using an on edge, all vertices in A except for v are
matched in M . �
Since all vertices in A are matched except for v, we must have |C| = |A| − 1.
Lemma 3: All vertices in B are matched in M .
Proof of 3: Using lemma 1, all vertices in B must have an on edge directing it to a vertex in V1, which
shows that all vertices in B are matched. �
That must mean |B| = |C| as well.
Lemma 4: adj(A) = B
Proof of 4: Whenever an augmenting path reaches a vertex in V1, it must have entered using an on
edge. The augmenting path can be then increased by exhausting all other edges of V1, which all must be
off (since there is at most one on edge). Thus, all neighbors of A are in B.

Using all the lemmas above, we have |adj(A)| = |B| = |C| = |A| − 1, which implies |adj(A)| < |A|,
which is the contradiction that we are looking for. �

6. We claim that xn = F2n−1 when n ≥ 1. To prove this, we use induction. Notice this is true for n = 1, 2.
Suppose it is true for n− 1. Then for n,

xn =
x2
n−1 + 1

xn−2
=

F 2
2n−3 + 1

F2n−5

=
(F2n−4 + F2n−5)2 + 1

F2n−5
=

(F2n−4)(F2n−4 + 2F2n−5) + F 2
2n−5 + 1

F2n−5

=
(F2n−5 + F2n−6)(F2n−3 + F2n−5) + F2n−7F2n−3

F2n−5

=
(F2n−5)(F2n−3 + F2n−5 + F2n−6) + F2n−6F2n−3 + F2n−7F2n−3

F2n−5

=
(F2n−5)(F2n−2) + F2n−5F2n−3

F2n−5

= F2n−1.

7. 2,3,7,23, (59,...)

8. We use strong induction. We notice that a0, ..., a7 are integral by the previous problem. Now, suppose
that a0, ..., an−1 are all integers.
First, we notice that ak and ak−1 are relatively prime for all k < n, since otherwise if p|ak and p|ak−1,
then by the recurrence, p|ak−2,..., p|a3 = 1.
From this, we see ak and ak−2ak−3 are relatively prime for all k < n − 1. For if p|ak, then p cannot
divide ak−3, otherwise ak−3ak+1 = a2k−1 + ak−2ak implies p|ak−1. Also, p cannot divide ak−2 because

akak−4 = ak−1ak−3 + a2k−2 would then give us p|ak−1ak−3.

Now, we claim that an−3an−1 + a2n−2 ≡ 0( mod an−4). This will show that an is an integer, as desired.
We have that

an−7an−6an−3an−1 + an−7an−6a
2
n−2

≡ an−6a
2
n−5an−1 + an−7an−6a

2
n−2

≡ an−6an−5a
2
n−3 + an−7an−6a

2
n−2

≡ an−6an−5a
2
n−3 + an−7an−5an−3an−2

≡ an−6an−6an−2an−3 + an−7an−5an−3an−2

= an−3an−2(an−6an−6 + an−7an−5)

= an−3an−2(an−8an−4) ≡ 0( mod an−4).

Thus
an−3an−1+a2

n−2

an−4
= an is an integer, as desired. This completes the induction and the proof.
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9. Let ai = ni

di
, where ni and di are integers and gcd(ni, di) = 1. We claim that

dm| gcd(n2, n3, n4)

m−1∏
i=0

di.

Note that this holds trivially when m ≤ 7; we now proceed by induction.
First, we will show that if p does not divide

∏m−1
i=0 di but p|nm and nm−1, then p|nk for any 1 < k < m.

This follows from the recurrence relation akak−4 = ak−1ak−3 + a2k−2 which gives us

nm =
nm−1nm−3dmd2m−2dm−4 + n2

m−2dmdm−1dm−3dm−4

nm−4dn−1d2n−2dn−3
(∗)

from which we see that p|nm−2. Continuing downwards, we eventually get p|nk for all 1 < k < m.

Now, we claim that if m > 7, p|dm but p does not divide
∏m−1

i=0 di, then p| gcd(nm−7nm−6, nm−4).
We have

am−7am−6am−4am

= am−7am−6am−3am−1 + am−7am−6a
2
m−2

= am−6(a2m−5 + am−4am−6)am−1 + am−7am−6a
2
m−2

= am−6am−5(a2m−3 + am−2am−4) + a2m−6am−4am−1 + am−7am−6a
2
m−2

= am−6am−5(a2m−3 + am−2am−4) + a2m−6am−4am−1 + am−7(am−5am−3 + a2m−4)am−2

= am−6(am−6am−2 − a2m−4)am−3 + am−6am−5am−2am−4

+a2m−6am−4am−1 + am−7(am−5am−3 + a2m−4)am−2

= am−6am−6am−2am−3 − am−6a
2
m−4am−3

+am−6am−5am−2am−4 + a2m−6am−4am−1 + am−7am−5am−3am−2 + am−7a
2
m−4am−2

= (am−6am−6 + am−7am−5)am−2am−3 − am−6a
2
m−4am−3

+am−6am−5am−2am−4 + a2m−6am−4am−1 + am−7a
2
m−4am−2

= am−8am−4am−2am−3 − am−6a
2
m−4am−3

+am−6am−5am−2am−4 + a2m−6am−4am−1 + am−7a
2
m−4am−2

= am−4(am−8am−2am−3 − am−6am−4am−3

+am−6am−5am−2 + a2m−6am−1 + am−7am−4am−2).

Thus if p|dm, then p|nm−7nm−6
∏m−1

i=0 di.
Meanwhile, from am−4am = am−3am−1 + a2m−2, if p|dm then p|nm−4dm−3dm−2dm−1. Thus if p does not

divide
∏m−1

i=0 di, then p| gcd(nm−7nm−6, nm−4).

Finally, we shall show that if p| gcd(nm−7nm−6, nm−4) and p does not divide
∏m−1

i=0 di, then p|nm−5.
In the first case, suppose p|nm−7. Then plugging in m− 3 to (*), we get p|nm−5.
In the second case, suppose p does not divide nm−7; then p|nm−6. Then plugging in m− 4 to (*), we get

p|nm−5nm−7 and thus p|nm−5. Thus, if p|dm does not divide
∏m−1

i=0 di, then p| gcd(n2, n3, n4).

10. Let an denote the number of matchings for the following graph:

Then by looking at the edge matching the middle left point of gn, we obtain

gn = 2an + gn−1.

Meanwhile, by looking at the edge matching the bottom left point of an, we obtain

an = an−1 + gn−1.

From these, we deduce

gn − gn−1 = 2an
5
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and

an − an−1 = gn−1.

Thus

gn−1 =
gn − gn−1

2
− gn−1 − gn−2

2
=

gn
2

+
gn−2

2
− gn−1

so

4gn−1 = gn + gn−2.

Now, we use induction to show that gngn−2 = g2n−1 + 2. We see that it is true for g0 = 1, g1 = 3, g2 = 11.
Suppose gn−1gn−3 = g2n−2 + 2. Then

gngn−2 = (4gn−1 − gn−2)gn−2

= 4gn−1gn−2 − g2n−2

= 4gn−1gn−2 − (gn−1gn−3 − 2)

= gn−1(4gn−2 − gn−3) + 2

= g2n−1 + 2.

11. Suppose the perfect matching does not contain the gray westmost edge shown in the following diagram.

Then the two leftmost horizontal edges are both forced to be in the match-
ing. By eliminating edges touching vertices already matched and noticing that a vertex of degree 1 has
that edge forced to be in the matching, we continue to see that all the bold edges in hte following diagram
are forced to be in the matching.
In particular, the topmost and bottommost edges are in the matching.

12. (a) Let An be the number of matchings of the nth Aztec Diamond. We claim that

AnAn−2 = 2A2
n−1.

To prove this, we show that the number of ordered pairs (A,B) is twice the number of ordered pairs
(C,D), where A,B,C,D are matchings of the n, n− 2, n− 1, n− 1th Aztec diamonds, respectively.
We superimpose a matching B of an n − 2-diamond on top of a matching A of an n-diamond as
shown below, so that the smaller diamond is centered inside the larger one.
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We may also overlap two matchings C,D of n − 1-diamonds so that the overlapping region is a
n− 2-diamond, as shown here:
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This may also be done vertically - there are two possible ways to fit together two such matchings in
this fashion. In either case, we may add the two ”‘missing”’ edges naturally to form a multigraph
on the vertices of the n-diamond, where all vertices in the central n− 2-diamond have degree 2, and
the other vertices have degree 1.
We claim that the graphs G formed in this fashion are the same as those formed by superimposing
a matching B of an n− 2-diamond on top of a matching A of an n-diamond.
We note that G is bipartite, and thus all cycles have even length. These cycles are contained in the
middle n − 2 diamond, whose vertices have degree 2. Each cycle can then be partitioned so that
every other edge goes to the same subgraph; adjacent edges go to different subgraphs. For each cycle,
there are two ways to decide which half of the cycle goes to A or B. Similarly, there are two ways to
decide which half goes to C or D. All doubled edges in G are split and shared by each subgraph. It
remains to show that the other edges must be partitioned uniquely.
In the graph below, each black vertex must be joined to a gray vertex.
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Thus, on each side of the diamond, we have exactly one gray vertex not connected to a black vertex.
There are three options for this lonely gray vertex:
1. It connects to a white vertex inside the n− 2-diamond.
2. It connects to another lonely gray vertex.
2. It connects to one of the x-vertices (which forces the other x-vertex in that pair to connect to a
lonely gray vertex on the neighboring side).
In all these cases, we have a path between two lonely gray vertices. We note that any such path
connecting two lonely gray vertices must have the gray vertices be from adjacent edges, because
otherwise the two paths formed by the four lonely gray vertices would cross in the middle of the
white vertices. Since the white vertices have degree 2, this cannot happen.
Now, we claim that both end edges in such a path will belong to the same subgraph in a partition of
G. This is easily shown by coloring the vertices of G in a checkerboard pattern. The two end vertices
are then different colors, and thus the path between them has an odd number of edges. Thus the
two end edges are in the same subgraph.
When partitioning G into a n-diamond and a n − 2 diamond, we simply let all four such edges be
part of A and determine the rest thereafter. Such a partition always exists.
When partitioning G into two n − 1-diamonds, we let each diamond take the two such edges that
are connected by a path. This forces the direction the diamonds overlap in (left-to-right or up-and-
down) and the rest of the partitioning is straightforward. Hence each doubled Aztec graph can be
partitioned into two order-(n−1) Aztec matchings in one way (top-bottom) or the other (left-right),
but never both. The partition of the paths is uniquely determined. The number of ways to combine
Aztec matchings of orders n and n − 2 is AnAn−2, whereas the number of ways to combine two
order-n− 1 matchings is 2A2

n−1. Thus AnAn−2 = 2A2
n−1 and we are done.

(b) We claim An = 2
n(n+1)

2 . We prove this using induction. First we note that A1 = 2 and A2 = 8.
Suppose it’s true for k < n. Then for n,

An =
2A2

n−1
An−2

=
2 · 2

n(n−1)
2 ·2

2
(n−1)(n−2)

2

= 2n(n−1)+1− (n−1)(n−2)
2 = 2

n(n+1)
2 .

Go Stanford!
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